

# An organic perspective on Animal reproduction and breeding

Wytze Nauta (LBI) and
Anet Spengler Neff (FiBL)
LIB-symposium, March 15-16th 2011

## Reproduction



## **➢Organic possibilities:**

- Growing interest in natural mating
  - Support in breeding program farm level
  - Save housing of bulls
- Supply of ET/AI free breeding stock
  - Special selection and publication
  - Organic breeding programs

## Reproduction



### >Examples:

- ET free bulls in Switzerland
- ET free bulls and natural mating in Bio Dynamic
- Natural mating in small populations (native breeds)
- Rotation breeding in pigs (for sows)
- Farm based breeding (cattle, poultry, pigs)
- Organic breeding program Org-AI based on young bulls

## Type of animal



### ➤ For **low input** (organic) production

#### This means:

- Production land connected
- Ruminants ≥ 60% roughage<sup>1</sup> and local concentrates
- In Switzerland: ≥ 90% roughage and 26 days /month pasture in summer<sup>2</sup>
- Pigs & Poultry fed by local feed stuff
- Production depends on location soil type, environment)
- Animals are flexible/robust (fluctuations in environment)
- Animals can adapt (low input of medicines)

 $<sup>^1\</sup>text{EU-Regulation}$  on organic agriculture Nr. 1804 / 1999 and EC 834 / 2007;  $^2\text{Bio}$  Suisse-Regulation / Demeter-Regulation D / CH

## Type of animal



### ➤ Conventional **high input** production

### This means:

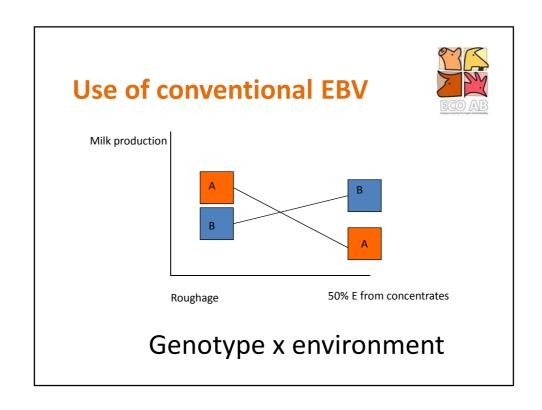
- High input feed → high output animal
- Production not soil/land connected (foot print, GHG)
- Animals uniform
- High input medicines
- · Housing and feeding adjusted
- Mutilations (horns, tails, teeth, beaks)

# Type of animal



### ➤ Conventional **high input** production

### And for breeding:


- Large breeding programs
  - Faster genetic progress
  - Increased selection intensity (data)
  - Testing schemes, genomics
  - Higher heritability
- Open market competition
- · Genetic erosion, inbreeding

# **Type of animal**



### **≻**Problems:

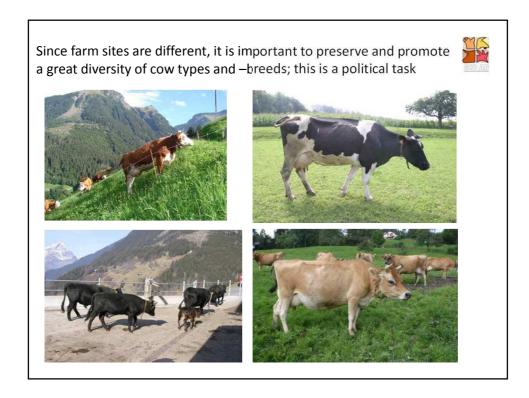
- Breeding goals differ (traits, weight)
- More breeding goals/breeds (divers populations)
- GxE effects productions and health/functional traits
- Animals can not be fed for such high production
- Less variation in supply
- Animal welfare and health
- Biodiversity at stake



### **Use of conventional EBV**

 $r^2 = (0.25 \times n \times h^2) / (1 + 0.25 \times (n-1) \times h^2).$ 

| Gen.<br>Correlation | r²   | Real reliability<br>EBV at 90 en 80%<br>conv. reliability | Aantal dochters nodig per kenmerk |                              |                             |
|---------------------|------|-----------------------------------------------------------|-----------------------------------|------------------------------|-----------------------------|
|                     |      |                                                           | Milk<br>h <sup>2</sup> = 0,35     | SCS<br>h <sup>2</sup> = 0,10 | CI<br>h <sup>2</sup> = 0,07 |
| 0.70                | 0.49 | 44% (39%)                                                 | 9 (7)                             | 31(25)                       | 44 (36)                     |
| 0.80                | 0.64 | 58% (51%)                                                 | 15 (11)                           | 54 (41)                      | 78 (59)                     |
| 0.90                | 0.81 | 73% (65%)                                                 | 28 (20)                           | 105 (72)                     | 152 (105)                   |
| 1                   | 1    | 90% (80%)                                                 | 94 (42)                           | 351(156)                     | 505 (225)                   |


<sup>\*\*</sup> Low genetic correlation → low reliability

## Type of animal



### **≻**Possible solutions:

- Organic breeding programs and goals/traits (new traits like roughage conversion, BCS, feed intake, use of feed)
- International cooperation (larger populations)
- Young bull system (no testing, no waiting period)
- Selection based on life time production (less environment)
- Farm based breeding (also possible with AI)
- Support of genomic information and sexed sperm?













**Swiss Original Braunvieh (OB)** 



Study on aptitude of Original Braunvieh (OB) versus Brown Swiss (BS) on organic dairy farms in Switzerland (Bachelor thesis S. Wagner, SHL / FiBL)



Effects of OB-blood (an old Swiss breed) on relevant health traits were estimated with linear models from 66'109 Lactations (over 4 years) on organic farms

Higher OB-blood-percentages showed a positive effect on functional traits like persistency, udder health (SCC and SCS) und longevity on organic farms, but they showed a negative effect on production traits.

## **Swiss Simmental Breed (Si)**



## **Reproduction techniques**





# Why is the discussion of reproduction techniques in organic breeding important?



- Great advances in biotechnologies which are tangent to organic breeding, because most breeding animals or their ancestors originate from conventional agriculture
- Naturalness is important for organic agriculture, but: where are the limits? What is natural?
- Some techniques are a matter of course for producers, but are refused by consumers

# Criteria to assess reproduction methods for organic animal breeding



- Do animals get harmed / treated in an unnatural way?
- Are breeding goals promoted that do not align with the basic principles of organic agriculture?
- Is gene transfer involved?
- Is soil-/land connected production still possible?
- Are there negative environmental impacts?
- Are there negative impacts on variety / gene pool?
- Consumer acceptance
- Issues related to property rights?

# Results of discussions among organic stakeholders



- «Organic Animal Breeding Network» (NÖTZ, 2007; Beat Bapst)
- FiBL-Survey (2007: Beat Bapst)
  - 10 Interviews (non-representative):
  - 5 professionals in organic lifestock production
  - 5 non-professionals (consumers)
- IFOAM breeding diversity converence, 2009 (Anet Spengler and Frank Augsten)

## 1. Natural mating



<u>Consumers believe</u>: On organic farms natural mating is normal <u>Org. farmers/advisors</u>: It would be ideal to practice natural mating:

- The only natural method of reproduction
- Higher genetic variety, because individual bulls are not used often
- Environment of bull's ancestors is known
- Better fertility of female animals

#### But:

- Risk of keeping bulls
- No progeny testing
- Corrective pairing is difficult
- Risk of spreading mounting diseases







## 2. Artificial insemination (AI)



<u>Consumers:</u> Al is an unnatural technique: both sperm production and artificial service

Org. farmers/advisors: All is a technique, without which modern breeding would be unthinkable (also organic):

- Progeny testing
- No danger, injuries, mating diseases
- Faster breeding progress
- Possibility to save semen from endangered breeds

<u>But: Participants from Africa / India</u>: Al causes problems, because not well known semen is used; non-adapted breeds are introduced, facilities for semen storage are not good enough; quality of semen is too low. Al is unnatural; better refuse to use it in organic agriculture

## 3. Embryo transfer (ET)



<u>Consumers</u>: refuse it, because it can be a pre-amplifier for embryo manipulation; because it is unnatural

Org. farmers/advisors from Europe: refuse it, because

- of no economic value for organic farms
- use of hormones
- breeding with infertile animals is possible
- Use of ET-bulls: different opinions

Org. farmers/advisors from USA: ET should be allowed in organic agriculture because very good female lines can be promoted (should be carried out without use of hormones)

# 4. Ovum pick up / in vitro fertilisation (IVF)



<u>Consumers</u>: refuse it, because it can be a pre-amplifier for embryo manipulation; because it is unnatural

Org. farmers/advisors: refuse it, because it is too far away from natural process:

- Fertilization outside of the body
- Use of hormones in surrogate animals (like ET)
- Danger of a narrowing of the gene pool



## 5. Sperm sexing

### Org. farmers/advisors: different opinions:

Sperm sexing should be allowed, because:

- possibility to promote very good and rare female lines
- faster breeding progress
- waste of male dairy calves can be stopped
- method is not affecting animals more than Al

### Sperm sexing should not be allowed, because:

- difficult to explain to consumers
- one-sided breeding is promoted (leading to more health problems)
- risk of inbreeding is increasing

### 6. Genomic Selection (GS)



### Org. farmers/advisors: different opinions:

Interesting option because:

- breeding for health traits can be promoted faster
- method is not affecting animals more than AI, no gene transfer

#### Should be refused, because:

- Gene-centred thinking: health traits are highly influenced by environment (h<sup>2</sup> is usually low): it would be more reasonable to focus on environment-related breeding
- One-sided breeding for production traits is promoted (h² is usually high); leading to more health problems and narrowing of gene pool
- To shorten generation intervals ET and waste of embryos / young calves is inevitable
- Breeding structures re being redefined: Performance testing on farm is getting irrelevant: farmers won't participate in breeding process on a population scale; problem of patented methods

#### But: rejection is very difficult

## 7. Cloning techniques



### Org. farmers/advisors:

#### Refused because:

- Cloning paves the way for genetic manipulation
- Would not be accepted by consumers
- Progress through breeding cannot be made by cloning

## **Summary / Conclusions:**



- Use of reproductive techniques is not unproblematic.
- All techniques, except Al have been negatively evaluated, fully or partly, by organic professionals
- Non-professionals are generally "shocked" about techniques and about their use in organic agriculture

### **Conclusions:**

- We should continue to allow AI in organic agriculture
- We should refuse other breeding techniques
- Clarification on GS is necessary
- Natural mating and family breeding are to be promoted in organic agriculture

### What we need:



- >Animal welfare friendly breeding
- >Support for different developments: farm based breeding, organic breeding programs.
- Support of **policymakers**, **regulation**, **institutions**
- ➤ Support of **farmers**
- Cooperation with **low input** farming
- Cooperation with **native breeds** breeders



In cooperation with





Symposium/workshop on ethical aspects of **Low Input Livestock systems** 

15-16 March 2011, Wageningen, The Netherlands